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Micromechanical constitutive modelling of granular media:
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Abstract. Micromechanical constitutive equations are developed which allow for the broad range of interparticle
interactions observed in a real deforming granular assembly: microslip contact, gross slip contact, loss of contact
and an evolution in these modes of contact as the deformation proceeds. This was accomplished through a syn-
ergetic use of contact laws, which account for interparticle resistance to both sliding and rolling, together with
strain-dependent anisotropies in contacts and the normal contact force. By applying the constitutive model to the
bi-axial test it is demonstrated that the model can correctly predict the evolution of various anisotropies as well
as the formation of a distinct shear band. Moreover, the predicted shear-band properties (e.g. thickness, prolonged
localisation, void ratio) are an even better fit with experimental observations than were previously found by use
of previously developed micromechanical models.
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1. Introduction

Tordesillas and Walsh [1] developed a framework for constructing micropolar constitutive
models for dry monodisperse granular materials. Their method is based on averaging the
interactions within a particle cluster, which consists of a single particle and its immediate
neighbours (see Figure 1). By considering only a small number of particles in its representa-
tive volume element, their method diverges from many previous micromechanical models, with
the subsequent advantage that this high-resolution technique should be capable of capturing
microstructures consisting of only a few particles e.g. shear bands. The generalised constitu-
tive relations derived in their paper were as follows:

σαβ = 1−υ
πR

∫
Ω

fαnβΦdn, (1.1)

µα = 1−υ
πR

∫
Ω

[
Mnα +ReβΦ3fβnαnφ

]
Φdn, (1.2)

where σαβ is the αβ-component of stress, µα is the α-component of couple stress, R is the
particle radius, υ is the void ratio of the Voronoi cell (ratio of the void volume to the total
volume of the cell), fα is the α-component of the contact force, nβ is the β-component of
the outward unit vector n from the particle centre in the direction of contact, M is the roll-
ing resistance, eβφ3 is the permutation symbol, and Ω represents all possible orientations in
space. A repeated subscript signifies a summation over the range of the repeated subscript (in
a two-dimensional model the summation is from 1 to 2). The weighting function Φ represents
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Figure 1. The homogenisation process employed by Tordesillas and Walsh [1]: (a) a Voronoi tessellation of the dis-
crete assembly yields a Voronoi cell for each particle and its immediate void space, (b) interactions between a parti-
cle and its contacting neighbours (i.e., forces and moments at contacts) are averaged over the particle’s Voronoi cell,
(c) corresponding micropolar continuum element of the same area as that of the Voronoi cell.

the angular-contact-density distribution function, and describes the probability of finding a
contacting particle for a given direction. Hence, for a particle with N neighbouring contacts,
it follows that

∫
Ω

Φdn=N.

The function Φ may be used to introduce contact anisotropy. The form of this angular-
contact-density distribution function, however, remains an open problem and is an area in
need of further investigation. It has been established experimentally that particle arrangements
(fabric) and rearrangements (fabric evolution) govern bulk behaviour of granular media. A
summary of key experimental findings on fabric evolution is given in [2, Chapter 4]. In par-
ticular, it has been observed that contacts within a granular material tend to align themselves
in the direction of maximum compressive strain [3]. To account for this experimental result,
Walsh and Tordesillas [4] adopted a bipolar contact-density distribution function in which the
highest probability of finding a contact was aligned with the direction of maximum compres-
sive strain. The form of their contact-density distribution function is shown in Figure 2 and
defined by

Φ (n,m, χ, ν)= N

2π
(1+χ cos (2θ)) , (1.3)
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Figure 2. The contact density distribution function Φ, in
polar coordinates, for the isotropic case χ = 0, and the
anisotropic case 0<χ ≤1.
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Figure 3. Graphical representation of Coulomb’s
law (Equation (2.5)).

where χ , the degree of the initial contact anisotropy, can take values in the range 0<χ ≤ 1.
The symbol θ is defined by cos θ = m · n, where the ‘dot’ denotes the scalar product and
m is the unit vector pointing in the direction of greatest probability of finding a contact-
ing neighbour. The drawback of this approach is that it limits the fabric evolution to a
predefined mode of deformation, which may compromise a model’s ability to predict the
development of certain anisotropies arising in the formation and evolution of highly local-
ised structures like shear bands (e.g. see [2, Chapter 4], [5]). In contrast, Tordesillas and
Walsh [1] use an angular contact-density distribution function in which the maximum prob-
ability of finding a contact is aligned with the direction of highest density increase. This
direction is given by the negative of the gradient of the void-ratio distribution function.
In such a case, the contact anisotropy is able to evolve as the assembly deforms, since
the void ratio is linked with strain; however, in practice the model was difficult to use
without resorting to further simplifying assumptions regarding the evolution of the strain
distribution throughout the whole assembly. Apart from these differences in the form for
Φ, the two constitutive models [1,4], are identical. In particular, they both neglect: (i) gross
slip and loss of contact, (ii) force anisotropy, and (iii) strain-dependent evolution in the
force and contact anisotropy. In contrast with these previous models, this paper presents
constitutive equations that allow for the possibility of microslip, gross slip and loss of con-
tact. Contact laws, which describe these different modes of contact, are used in conjunction
with strain-dependent contact forces, thereby allowing the current model to capture the evo-
lution of these contact forces, the various modes of contact and contact anisotropy.

2. Incorporating gross slip, microslip and loss of contact

Forces and moments between contacting particles were not explicitly expressed in the previous
discussion. Expressions for these contact forces and moments need to be inserted into the gen-
eralised constitutive laws, Equations (1.1) and (1.2), before the constitutive laws can be used.
In this section, expressions are developed for contact forces and moments, which account for
the broad range of interactions arising in real deforming granular media.
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The contact force, appearing in (1.1) and (1.2), can be separated into normal f n and tan-
gential f t components,

fα =f nnα +f t tα, (2.1)

where tα is the α-component of the unit vector tangential to the contact. The normal force at
a contact can be thought of as having two parts: (i) the initial normal force at a contact, and
(ii) the normal force resulting from the relative normal displacement of contacting particles. If
it is assumed that the particle deformation is linear elastic and that contacts are cohesionless,
then the normal force at a contact can be written as

f n=
{
f initial +kn�un if f initial +kn�un<0,
0 if f initial +kn�un≥0,

(2.2)

where f initial is the initial normal contact force, kn is the particle’s normal stiffness coefficient,
and �un is the relative normal displacement of two contacting particles. The previous models
of Tordesillas and Walsh [1] and Walsh and Tordesillas [4] assumed a constant f n and so did
not allow an evolution or loss of contacts.

It is well-accepted that the normal contact force (and for that matter, the tangential con-
tact force) is not generally equal at all contacts, even prior to deformation. That is, particles
rarely share forces equally amongst all neighbours. A striking demonstration of this normal
contact force anisotropy can be seen in the photo-elastic disk experiments of Howell et al.
[6]. In these experiments, it is clearly seen that particles tend to transmit forces through only
2 or 3 of their contacts, resulting in the so-called force chains. The other contacting particles
can be considered to be spectator particles, as they have little or no contribution to the force
transmission. Preferential force transmission occurs even prior to deformation of a granular
material (e.g. static granular pile). To account for this potential normal force anisotropy, a
weighting function, similar to that used for contact anisotropy (Equation (1.3)), can be com-
bined with f initial, such that the angular dependent normal force at a contact is expressed as

f n (θ)=
{
f initial (1+χ∗ cos (2θ +φ))+kn�un if f initial (1+χ∗ cos (2θ +φ))+kn�un<0,
0 if f initial (1+χ∗ cos (2θ +φ))+kn�un≥0.

(2.3)

In (2.3), χ∗ represents the degree of the initial normal contact-force anisotropy and can take
values in the range 0 ≤ χ∗ ≤ 1, with χ∗ = 0 corresponding to the isotropic case. Again, θ is
defined by cos θ =m ·n and φ is defined such that cos φ2 represents the dot product between
m and a unit vector in the direction of the maximum normal contact force. Note that the
integrals, which, respectively, define the stress and couple stress in (1.1) and (1.2), are to be
evaluated with respect to θ . By defining the normal contact force according to (2.3), not only
has a potential initial normal contact-force anisotropy been introduced, but also the normal
contact-force anisotropy is now able to evolve naturally with strain, as the relative normal dis-
placement can be related to strain via:

�un=2Rεαβnαnβ, (2.4)

where εαβ is the αβ-component of strain. Furthermore, an evolving anisotropy in the normal
contact force results in an evolving angular-contact distribution, as contacts are lost in direc-
tions for which f initial (1+χ∗ cos (2θ +φ))+kn�un≥0.



Micromechanical constitutive modelling of granular media 97

In Equation (2.1), the tangential contact force can be related to the normal contact force
by following Coulomb’s contact law (see Figure 3) for the various modes of contact (i.e., mi-
croslip and gross slip) and no contact:

f t =



sign(�ut )µ|f n| if |kt�ut |≥ |µf n| and f n <0 ⇒gross slip,
kt�ut if |kt�ut |< |µf n| and f n <0 ⇒microslip,
0 if f n≥0 ⇒no contact,

(2.5)

where µ is the inter-particle friction coefficient, kt is the particle’s tangential stiffness coeffi-
cient, and �ut is the tangential component of the relative displacement of the contact points
and is related to strain and curvature (gradient in rotation) κϕ according to

�ut =2R
(
εqrnr tq −Rnϕκϕ

)
, (2.6)

such that

sign
(
�ut

)=
{

1 if εqrnr tq −Rnϕκϕ >0,
−1 if εqrnr tq −Rnϕκϕ <0.

(2.7)

Strictly speaking, the tangential contact force should have an additional term to represent
the initial tangential contact force acting on a particle. However, the application of the cur-
rent model is restricted to cases in which the granular specimen is prepared such that the
expected initial tangential contact force is zero. Unlike the initial normal contact force, the
initial tangential contact force may be either positive or negative, such that the expected initial
tangential contact force in many circumstances will be close to zero. Applications for which
the expected initial normal force may not be zero are, for now, not considered.

Since f n has an evolving anisotropy, and f t depends on f n, it follows that f t also has
an evolving anisotropy. More specifically, not only do these contact laws (Equations (2.3) and
(2.5)) allow the contact mode to be identified, but they also allow the direction of these con-
tact modes to change with deformation, as the inequality constraints in Equation (2.5) con-
tain an angular dependence due to the angular dependence of f n and �ut . In other words,
the mode of contact will vary with the direction of contact. At any stage in a granular media’s
deformation, a neighbouring particle pair will be sharing only one of the following: a micro-
slip contact, a gross slip contact, or no contact. Therefore, the integration over the angle in
Equations (1.1) and (1.2) can be separated into a sum of integrals, with each integral repre-
senting a contact mode (i.e., gross slip or microslip) or no contact. That is, Equations (1.1)
and (1.2) may be written as

σαβ = 1−υ
πR

x∑
i=1


ci∫

ai

fG.S.
α nβΦdθ+

di∫
ci

fM.S.
α nβΦdθ

gross slip microslip

 , (2.8)

µα = 1−υ
πR

x∑
i=1


ci∫

ai

[
MG.S.nα+Reβφ3f

G.S.
β nαnφ

]
Φdθ+

di∫
ci

[
MM.S.nα+Reβφ3f

M.S.
β nαnφ

]
Φdθ

gross slip microslip

,

(2.9)

where the superscripts ‘G.S.’ and ‘M.S.’ denote the gross slip and microslip terms, respectively.
The integrals corresponding to regions of no contact are not shown, as regions of no contact
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do not contribute (directly) to the stress or couple stress. The integration limits and the upper
limit of the summation index x obey the following relationships:

x∑
i=1

[(ci −ai)+ (di − ci)+ (ei −di)]=2π, and a1 =0;ai+1 = ei; ex =2π. (2.10)

Equation (2.10) is a condition that ensures that all possible contact directions (0 →2π ) have
been assigned a contact mode. In (2.10), the quantity (ei −di) corresponds to the range of
angles for which there are no contacts. The gross slip regions (ci −ai) are further separated
into two regions, (bi −ai) and (ci −bi), which are related to sign

(
�ut

)
being positive or neg-

ative, respectively. The limits of integration in (2.8) and (2.9) need to be determined from the
inequality constraints in (2.5) and (2.7). For example, the limits ai , ci and di , demarcating the
regions of gross slip and microslip, must satisfy kt

∣∣�ut ∣∣−µ |f n|=0. The integration limits ai ,
di and ei satisfy f n=0, and the gross-slip integration limit bi must satisfy

(
εqrnr tq −Rnϕκϕ

)=
0. If, for example, with increasing angle a gross slip region (c3 −b3) is immediately followed
by a region of no contact (e3 −d3), the microslip integration limits are set to have the prop-
erty d3 = c3 =0. These integration limits will now be referred to as the transition angles. Due
to the form of the constraints in (2.5) and (2.7), involving absolute values of cosine-squared
functions, there exists an upper bound on the value that the summation index x may take.

A linear contact law is used to approximate the rolling resistance for both the microslip
and gross slip contacts, such that

MG.S.=2k′G.S.Rkψnψ, (2.11)

MM.S.=2k′M.S.Rkψnψ, (2.12)

where k′G.S. and k′M.S. are rolling-stiffness coefficients.
In this paper, the bipolar form for the contact-density distribution function Φ used by

Walsh and Tordesillas [4] is adopted (see Equation (1.3) and Figure 2). However, unlike in
[4], no assumption is imposed on the direction of maximum probability of finding a con-
tact m (direction of contact anisotropy) at this stage of the analysis. Hence, the direction of
m can be defined at the point of implementation of the resulting constitutive law. Further-
more, in the present analysis, the form of Φ and the direction of m serve only as initial con-
ditions for the contact anisotropy. Since the contact laws introduced earlier incorporate loss
of contacts, then, as deformation proceeds, the contact-density distribution function will be,
in effect, modified (evolving) as various angles are “switched off” for regions in which particle
contacts are broken.

We note that the bipolar form of Φ is based on a numerical simulation of the direction
of contacts averaged over a large number of particles [3]. Furthermore, the generalised con-
stitutive equations (1.1) and (1.2) are not restricted to a specific particle-cluster configuration,
which was the original reason for Tordesillas and Walsh [1] to introduce the weighting func-
tion Φ. Therefore, when interpreting the contact mode and force anisotropy results in Section
4 of this paper, we emphasize that the results will be an expectation rather than an exact pre-
diction of the contact behaviour within a granular specimen.

The form of Φ in Equation (1.3) is now substituted in Equations (2.8) and (2.9), along
with the expressions for the contact forces and moments (2.3), (2.5), (2.11) and (2.12). With
these substitutions, Equations (2.8) and (2.9) can be integrated to give the following micro-
mechanical constitutive laws:

σαβ =a (υ) [Pαβ +Qαβmnεmn+Rαβj εαj +Sαβsj εsj
]
, (2.13)

µα =a (υ)Tαψκψ, (2.14)
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where

a (υ)= 1
2πR


 (1−υ)

[
36−4π

√
3
]
−π2

6−π√
3


. (2.15)

The coefficients Pαβ , Qαβmn, Rαβj , Sαβsj and Tαψ depend on the transition angles, the various
anisotropy parameters and the physical properties of particles, and are defined in the Appen-
dix. To obtain (2.15) it has been assumed, following Hinrichsen et al. [7], that

N= 1

6−π√
3

[
36−4π

√
3− π2

1−υ

]
, (2.16)

for 0 ≤N ≤ 6. Equation (2.16) reflects an expected relationship between the number of con-
tacts per particle and the void ratio and, in a similar manner to (1.3), it was obtained by
averaging over a large number of particles. As such, any results obtained using (2.16) will be
considered to reflect an average or expectation rather than an exact prediction for a specific
particle cluster.

3. Fabric and force evolution in a bi-axial compression test

To demonstrate the capabilities of the micromechanically-based constitutive model, we exam-
ine the formation of shear bands in a bi-axial test, using the method provided by Mühlhaus
and Vardoulakis [8] for micropolar continua. As illustrated in Figure 4, the specimen is com-
pressed in the X2-direction at a constant rate. The vertical boundaries are allowed to deform
such that the normal stress σ11 remains constant along these boundaries. Prior to shear-band
formation, the deformation is assumed to be homogeneous and ε12 =ε21 =κ1 =κ2 =0. In addi-
tion to predicting shear-band evolution, specific attention will be given to the model’s predic-
tions of microstructural development (e.g. contact and contact-force evolution).

Briefly, the method originally proposed by Mühlhaus and Vardoulakis [8] involves solving
the rate form of the stress equilibrium equations for a Cosserat/micropolar material, and then
looking for special solutions that may exist within a narrow region (shear band). These spe-
cial solutions correspond to an inhomogeneous deformation that is distinct from the homo-
geneous deformation occurring both prior to the onset of a shear band and outside the shear
band after the band has formed. The onset of the inhomogeneous solution is referred to as
the bifurcation point.

X2

X1

(2)

sh a
angle
ear b nd

xyX2

X1

(1) (3)

Figure 4. Stages in shear-band formation within a bi-axial test: (a) initial specimen, (1) homogeneous deformation
prior to shear band formation, (2) onset of shear band or bifurcation point, and (3) evolution of shear band.
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Adopting the nomenclature employed by Tordesillas et al. [9], we can write the stress-rate
equilibrium equations in shear-band coordinates (x, y) in terms of time rates of displacement

V and rotation
dω
dt

as:

AαηV
′′
η +Aα31

dω′′

dt
+Aα32

dω′

dt
=0, (3.1)

A3η1V
′′
η +A3η2V

′
η+A331

dω′′

dt
+A332

dω′

dt
+A333

dω
dt

=0, (3.2)

where only the gradients across the shear band (the y-coordinate) are nonzero with ( )′=d ( )
dy

;

α = 1, 2; η = 1, 2; and the various coefficients (i.e., the subscripted ‘A’s) come from the rate
form of the constitutive law. That is, by writing

〈
dσαβ

dt

〉
=Lαβηλ dεηλ

dt
, (3.3)

〈
dµλ
dt

〉
=Gλαβ dεαβ

dt
+Hλα dκα

dt
, (3.4)

where 〈 〉 represent the Jaumann time derivative, we can be represent the various coefficients
in (3.1) and (3.2) as

A11 = sλs1L111λ+ sλs2L121λ− 1
2
s2s2σ, A12 = sλs1L112λ+ sλs2L122λ+ 1

2
s1s2σ,

A21 = sλs1L211λ+ sλs2L221λ− 1
2
s1s2σ, A22 = sλs1L212λ+ sλs2L222λ+ 1

2
s1s1σ,

A132 = eηλ3s1L11ηλ+ eηλ3s2L12ηλ, A232 = eηλ3s2L22ηλ+ eηλ3s1L21ηλ,

A131 =A231 =0, A311 = sλs1G11λ+ sλs2G21λ,

A321 = sλs1G12λ+ sλs2G22λ, A312 = sλL211λ− sλL121λ,

A322 = sλL212λ− sλL122λ, A331 =H1λsλs1 +H2λsλs2,

A332 = eηλ3s1G1ηλ+ eηλ3s2G2ηλ, A333 = eηλ3L21ηλ− eηλ3L12ηλ. (3.5)

In Equation (3.5), σ =σ11 −σ22, s1 =− sin θb and s2 =cos θb, where θb is the shear-band angle
(see Figure 4).

Solutions are then sought for (3.1) which satisfy the following boundary conditions (in
accordance with experimental observations and DEM simulations of Iwashita and Oda [5]
and Oda and Kazama [10]:

(i) across a shear band (i.e., −db ≥ y≥ db where 2db is the shear-band thickness), the dis-
placement rate is an even function of y and the rotation rate is an odd function of y;

(ii) continuity of traction and couple stress at the shear-band boundary;
(iii) V1 = V ∗

1
2 and V2 = V ∗

2
2 at y = db and V1 = −V ∗

1
2 and V2 = −V ∗

2
2 at y = −db. Since it is

assumed that regions outside the shear band act rigidly after the bifurcation strain is
reached, and that the bi-axial test is strain-controlled, the rate of vertical displacement
of the rigid outer regions of the specimen V ∗

2 is prescribed. The horizontal rate of dis-
placement V ∗

1 , on the other hand, needs to be determined from the strain within the
shear band.



Micromechanical constitutive modelling of granular media 101

Once the displacement and rotation rates are determined, from solving (3.1) and (3.2) subject
to the boundary conditions, an incremental procedure can be adopted to determine the strain
and rotation within a shear band, and therefore the evolution of the shear band. For a more
detailed discussion of the shear-banding problem and the method outlined here, see [9].

4. Results and discussion

Prior to deformation, we assume that the particles are randomly packed under conditions in
which gravity is negligible. Therefore, the expected contact distribution and the expected con-
tact-force distribution are isotropic, i.e., χ=χ∗ =0. Only after deformation occurs would one
expect the contact distribution and the contact-force distribution to become anisotropic and
take on a preferential direction. Model predictions are now presented for the following model
parameters: χ =χ∗ = 0; m2 = 1; v0 = 0·2; φ= 0; f initial = −(1/20)Rkn; kn = kt = 4 × 107 N/m;
R=0·005 m. These parameters reflect a moderate particle-packing density with an initially iso-
tropic contact and contact-force distribution.

Figure 5 shows the change in thickness of a shear band inclined at an angle of 65 degrees
to the X1-axis. The thickness rapidly approaches a value of 4–5 particle diameters. In real
sands for which there is a distribution of particle sizes and shapes, reported shear-band widths
range from around 7–8 particle diameters [10] up to 17 particle diameters [11]. However, two-
dimensional Schneebeli systems, consisting of circular rods, display shear bands that involve
fewer particles (1–4 particle diameters) than those found in real sands [12]. Note that the
thickness predicted by the current model is also consistent with the shear-band analysis based
on the deformation theory of plasticity for frictional materials with internal constraint [8],
[13]. Although not shown, other shear-band inclinations display similar behaviour.

In Figure 6, it can be seen that the expected contact distribution evolves with increasing
strain. Stage 1, the innermost (smallest) ring, corresponds to the initial contact mode distri-
bution. Stage 2, the middle ring, corresponds to the contact-mode distribution at the bifur-
cation point (onset of shear banding). Stage 3, the outside (largest) ring, corresponds to the
contact mode distribution within a shear band at a shear strain of 0·8. Initially, all contacts
are microslip contacts (stage 1). With compression, however, contacts are lost in the direc-
tion perpendicular to the applied compressive strain, and the regions of microslip shrink to a
narrow angle in the direction of the maximum principal strain (stage 2). This pattern of loss
and retention of contacts is consistent with the formation of particle columns at the onset

0
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25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
shear strain

Figure 5. The variation of the shear-band thickness with shear strain for a shear band inclined at 65 degrees to the
X1-axis.
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Figure 6. Evolution of contact modes for the three stages
of the bi-axial test.

line of applied 
compressive strain 

Stage 1 

Stage 2 

Stage 3 

X2

X1

Figure 7. A polar plot showing the evolution of
the normal contact force for the three stages of the
bi-axial test.

of shear banding. It is thought that the buckling of these particle columns is the underlying
mechanism responsible for the softening observed during shear banding [10]. With a further
increase in shear strain it is seen that there is a rotation of the direction of contacts (and no
contacts) and the contact modes, which is also consistent with observed microstructural devel-
opment inside shear bands (stage 3).

Figure 7 displays the evolution of the normal contact force for the three stages in shear-
band development presented in Figure 6. Firstly, it is confirmed that normal contact-force
anisotropy can develop from an initially isotropic distribution using this constitutive model.
At the bifurcation point the normal contact force has become highly anisotropic, with a max-
imum direction aligned with the maximum principal strain. Secondly, within the shear band,
the direction of the maximum normal force begins to rotate away from the direction of max-
imum principal strain. The direction and rate of rotation of the normal contact force is the
same as the direction of rotation of the contact modes shown in Figure 6, and the combined
contact mode and normal contact force behaviour is consistent with the rotation of particle
columns and force chains in a shear band.

Figure 8 shows the change in the global void ratio (void ratio averaged across the entire
specimen) for stage 1, and the change in the local void ratio (void ratio averaged across
the band) during stage 3. The initial overall compaction by an applied compressive strain is
expected, given that the initial void ratio is 0·2. The observed decrease in void ratio of 0·05
corresponds to an average gain of only one contact per particle. At first glance this result
would seem to contradict the loss of contacts observed in Figure 6. However, one should
recall that: (i) the contact modes are only expectations, and (ii) a void ratio of 0·2 only cor-
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Figure 8. The variation of void ratio with deformation.
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Figure 9. Total rotation in the region of the shear
band at a shear strain of 0·8.

responds to approximately three contacts per particle, such that a particle can readily accom-
modate an additional contact within the region predicted to have a contact in Figure 6. The
increase in void ratio within a shear band, as shown in Figure 8, is consistent with the experi-
mental observations of dilation and the appearance of large voids within shear bands in sands
(e.g. see [2, Chapter 4]) and assemblies Schneebeli rods [12].

The total rotation in the region of the shear band, as shown in Figure 9, refers to the net
accumulation of rotation ω (see Equation (3.1)) from the start of deformation up to a shear
strain of 0·8. Note that although the shear band thickness at a shear strain of 0·8 is only
4–5 particle diameters (Figure 5), the microstructure beyond 5 particle diameters has been
disturbed (finite rotations) due to prior shear strains for which the shear band thickness was
greater than 5 particle diameters. The shear-band thickness shown in Figure 5 should then be
considered an instantaneous thickness, whereas a shear-band thickness implied by rotations
should resemble that seen in experiments.

Note that the current model predicts rotations to change sign within a shear band. This
would seem to contradict the findings from DEM simulations of Iwashita and Oda [5], in
which particles were seen to rotate in one direction on average. It could be argued that, as
the shear-band thickness in Figure 5 is in the range of 4–5 particle diameters, beyond a shear
strain of 0·8, further rotations will only occur within 4–5 particle radii from the centre of the
shear band, such that the central, unidirectional, peak will begin to dominate the observed
rotations. However, larger shear strains are beyond the small strain limitations of the current
constitutive model.

5. Conclusions

A high-resolution, micromechanically-based, Cosserat constitutive model for the quasi-static
deformation of a dry granular material has been presented. The model incorporates inter-par-
ticle contacts undergoing microslip, gross slip, rolling resistance and loss of contact. Fabric
and contact force anisotropies are also introduced, and the evolution of these anisotropies is
naturally accounted for. When applied to the shear-banding problem, the micromechanically-
based constitutive laws successfully reproduces expected shear-band thicknesses and the con-
tact and force anisotropies evolve in a way consistent with the formation and evolution of
particle columns and force chains within a shear band. Ongoing work is focused on under-
standing the evolution of the anisotropies, through a DEM analysis, in preparation for the
extension of these models to the large deformations encountered in engineering applications.
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Appendix A. Coefficients appearing in Equation (2.13) and (2.14)

The various coefficients in the constitutive equations (2.13) and (2.14) are

Pαβ = f initial

π

x∑
i=1

 w1 (ai, di)Wαβ1 +w2 (ai, di)Wαβ2 +w3 (ai, di)Wαβ3

+µesα3

[
(w1 (bi, ci)−w1 (ai, bi))Wsβ1 + (w2 (bi, ci)−w2 (ai, bi))Wsβ2
+ (w3 (bi, ci)−w3 (ai, bi))Wsβ3

]
 ,

Qαβmn= 2Rkn

π

x∑
i=1



w4 (ai, di)Wαβ1Wmn1 +w5 (ai, di)
(
Wαβ1Wmn2 +Wαβ2Wmn1

)
+w6 (ai, di)

(
Wαβ1Wmn3 +Wαβ2Wmn2 +Wαβ3Wmn1

)
+w7 (ai, di)

(
Wαβ2Wmn3 +Wαβ3Wmn2

)+w8 (ai, di)Wαβ3Wmn3

+µesα3




(w4 (bi, ci)−w4 (ai, bi))Wsβ1Wmn1
+ (w5 (bi, ci)−w5 (ai, bi))

(
Wsβ1Wmn2 +Wsβ2Wmn1

)
+ (w6 (bi, ci)−w6 (ai, bi))

(
Wsβ1Wmn3 +Wsβ2Wmn2 +Wsβ3Wmn1

)
+ (w7 (bi, ci)−w7 (ai, bi))

(
Wsβ2Wmn3 +Wsβ3Wmn2

)
+ (w8 (bi, ci)−w8 (ai, bi))Wsβ3Wmn3






,

Rαβj = 2Rkt

π

x∑
i=1

[
w9 (ci, di)Wjβ1 +w10 (ci, di)Wjβ2 +w11 (ci, di)Wjβ3

]

Sαβsj =−2Rkt

π

x∑
i=1



w12 (ci, di)Wαβ1Wsj1 +w13 (ci, di)

(
ehα3Whβ1Wsj1 + ehs3Wαβ1Whj1
+ehβ3Wαh1Wsj1 + ehj3Wαβ1Wsh1

)

+w14 (ci, di)

(
Wjβ1δsα +Wjs1δβα +Wsβ1δjα +Wαβ1δjs
+Wαj1δβs +Wαs1δβj −6Wαβ1Wsj1

)

+w15 (ci, di)

(
ehβ3Wjh1Wsα3 + ehj3Whβ1Wsα3

+ ehα3Wsh1Wjβ3 + ehs3Whα1Wjβ3

)

+w16 (ci, di)
(
Wαβ1Wsj1 + δjβ δsα −Wjβ1δsα − δjβWαs1

)


,

Tαψ = 2R
π

x∑
i=1

⌊
kG.S.

[
w9 (ai, ci)Wαψ1 +w10 (ai, ci)Wαψ2 +w11 (ai, ci)Wαψ3

]
+ (kM.S.+R2kt

) [
w9 (ci, di)Wαψ1 +w10 (ci, di)Wαψ2 +w11 (ci, di)Wαψ3

]
⌋
,

where

δαβ =
{

1 if α=β,
0 if α 
=β, ,

Wαβ1 =mαmβ,
Wαβ2 = [eφβ3Wαφ1 + eφα3Wφβ1

]
,

Wαβ3 = [δαβ −Wαβ1
]
,

w1 (x, y)= 1
48




12 (2+χ + (1+χ)χ∗ cosφ) (y−x)+3 (χ +4)χ∗ sinφ (cos 2y− cos 2x)
+3 (χ +1)χ∗ sinφ (cos 4y− cos 4x)+χχ∗ sinφ (cos 6y− cos 6x)
+3 (4 (χ +1)+ (3χ +4)χ∗ cosφ) (sin 2y− sin 2x)
+3 (χ + (χ +1)χ∗ cosφ) (sin 4y− sin 4x)+χχ∗ cosφ (sin 6y− sin 6x)


 ,

w2 (x, y)= 1
48


 12χ∗ sinφ (x−y)+3χχ∗ (cos (φ−2x)− cos (φ−2y))

+12 (cos 2x− cos 2y)+3χ (cos 4x− cos 4y)
+3χ∗ (cos (φ+4x)− cos (φ+4y))+χχ∗ (cos (φ+6x)− cos (φ+6y))


 ,
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w3 (x, y)= 1
48


12 (2−χ + (χ −1)χ∗ cosφ) (y−x)
+12 (χ −1) (sin 2y− sin 2x)+3χχ∗ (sin (φ−2y)− sin (π −2x))
+6χ∗ (2−χ) (sin (φ+2y)− sin (φ+2x))−3χ (sin 4y− sin 4x)
+3χ∗ (χ −1) (sin (φ+4y)− sin (φ+4x))−χχ∗ (sin (φ+6y)− sin (φ+6x))

 ,

w4 (x, y)= 1
96

(
3 (8χ +12) (y−x)+3 (7χ +8) (sin 2y− sin 2x)
+3 (2χ +1) (sin 4y− sin 4x)+χ (sin 6y− sin 6x)

)
,

w5 (x, y)= 1
96
(3 (χ +4) (cos 2x− cos 2y)+3 (χ +1) (cos 4x− cos 4y)+χ (cos 6x− cos 6y)) ,

w6 (x, y)= 1
96
(12 (y−x)+3χ (sin 2y− sin 2x)−3 (sin 4y− sin 4x)−χ (sin 6y− sin 6x)) ,

w7 (x, y)= 1
96
(3 (χ −4) (cos 2y− cos 2x)−3 (χ −1) (cos 4y− cos 4x)+χ (cos 6y− cos 6x)) ,

w8 (x, y)= 1
96

(
3 (−8χ +12) (y−x)−3 (−7χ +8) (sin 2y− sin 2x)
+3 (−2χ +1) (sin 4y− sin 4x)+χ (sin 6y− sin 6x)

)
,

w9 (x, y)= 1
16
(4 (2+χ) (y−x)+4 (1+χ) (sin 2y− sin 2x)+χ (sin 4y− sin 4x)) ,

w10 (x, y)= 1
8
(cos 2x− cos 2y) (2+χ (cos 2x+ cos 2y)) ,

w11 (x, y)= 1
16
(4 (2−χ) (y−x)+4 (χ −1) (sin 2y− sin 2x)−χ (sin 4y− sin 4x)) ,

w12 (x, y)= 1
96

(
(36+24χ) (y−x)+3 (8+7χ) (sin 2y− sin 2x)
+3 (1+2χ) (sin 4y− sin 4x)+χ (sin 6y− sin 6x)

)
,

w13 (x, y)= 1
48
(cos 2x− cos 2y)

(
6+2χ +3 (1+χ) (cos 2x+ cos 2y)+χ (cos 4x+ cos 4y)
+χ cos [2 (x−y)]+χ cos [2 (x+y)]

)
,

w14 (x, y)= 1
96
(12 (y−x)+3χ (sin 2y− sin 2x)−3 (sin 4y− sin 4x)−χ (sin 6y− sin 6x)) ,

w15 (x, y)= 1
96

(
6χ
(
cos2 2x− cos2 2y

)+3 (χ −4) (cos 2y− cos 2x)
+3 (cos 4y− cos 4x)+χ (cos 6y− cos 6x)

)
,

w16 (x, y)= 1
96

(
(36−24χ) (y−x)+3 (7χ −8) (sin 2y− sin 2x)
−3 (2χ −1) (sin 4y− sin 4x)+χ (sin 6y− sin 6x)

)
.

For the incremental procedure outlined in Section 3, the change in the void ratio from an
initial void ratio ν0 is given by

ν−ν0 = Area−Area of particles
Area

− Initial Area−Area of particles
Initial Area

= (1−ν)
[

Area− Initial Area
Initial Area

]
,

if ε11 and ε22 are much larger than ε12 and ε21 yet still much smaller than 1, ν0 << 1 and
ν <<1, then the change in void ratio can be approximated by ν−ν0 = (1−ν0) [ε11 + ε22].
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